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ABSTR4CT
This paper describes the philosophical differences between three current SPN models
in an attempt to merge the most important (and non-contradictory) aspects into one.
It previews the design of a package for the solution of this unified model.

1. Introduction

Petri net (PN) models were originally intendedl as a means for a natural representation of

the interaction, logical sequence and synchronization among the elementary activities into which
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the operation of a system or the execution of a procedure can be divided. As such, PN's did not

convey any information about the duration of each activity or on the way in which the PN-

transition to be fired is actually selected from among those enabled in a marking.

Recently, efforts have been made2 ,'3,4.5,6,7 to exploit the modeling power of PN's for

representing time-related features of stochastic systems, both in the construction of the model to -

be solved, and in the definition of the desired output measures. It seems most natural to the

authors to associate time with events modeled by PN-transitions; and in fact this choice has been

made by the majority of authors in this topic. A Stochastic Petri net is a marked Petri net in

which to any PN-transition is associated a random variable, called the f iring time , characterized

by a given distribution function. Moreover, a set of rules are defined for determining the evolu-

* tion of the net from the knowledge of the firing time distributions. Natkin 2 and Molloy3 first

introduced the SPN with exponentially distributed firing time, so that the stochastic realization of

* the PN is represented by c eontinuous-time Markov chain (CTMC).

Moreover, PN's are also useful in modeling interactions between activities which are of a

logical nature, and do not correspond to any time-consuming system operation. In order to cope

with this problem a generalized class of SPN's (called GSPN's)5 has been proposed. GSPN's are

obtained by allowing PN-tranitions to belong to two different classes: immediate PN-transitions

and timed PN-transitioos. Immediate PN-transitions have higher priority than timed PN-

transitions and fire in zero time. A consequence of this partition of PN-transitions is the random

switch, which is used to probabilistically determine which among many enabled immediate PN-

transitions will fire.

A further generalization of the concept of an SPN was developed8 where both probabilistic

branches (realized by means of a special use of immediate PN-transitions) and general distribu-

tions are included. In this general formulation the associated stochastic process in no longer Mar-

kovian, and an analytical solution technique has been provided where the firing times have a

Phase-type distribution. Furthermore, a numerical technique has been presented9 for aggregating

the state space in the associated Markov chain in the presence of stiffness. In the above !... ,
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tioned line of research a SPN is viewed as a compact way to define a stochastic process iso-

morphic to the reachability tree of the SPN.

Another somewhat different philosophical view of SPN's is held by the designers of the

ESPN (Extended SPN)6 model and the corresponding solution package DEEPI (the Duke ESPN

Evaluation Package, I). They see the SPN as a representation of the system being modeled,

rather than as a representation of an underlying stochastic process. The ESPN allows an arbi-

trary probability distribution (even empirical data) for the firing time of a PN-transition. If the

.ESPN does indeed represent an analytically solvable stochastic process (i.e. a CTMC or a semi-

Markov process) it may be solved analytically. 10 If it does not, then the ESPN (not the reacha-

bility tree) is simulated. Table I presents a comparison between the three SPN models and

corresponding solution packages, GSPNA, DEEPI, and IEN-SPN (from the IEN group).

Recently, an effort was begun at Duke University to work toward merging these stochastic

Petri net models, both plilosophically and physically. The purpose of this paper is to report on

this new model and on the design of the corresponding solution package, DEEP. This package

will include the most important (non-contradictory) aspects of the three group's works (the GSPN

group, the lEN group, and the Duke group), as well as some important additional features. The

package will contain both analytic and simulation solution methods, and will addres' the

-stiffness" problem that is often encountered in reliability and performance models. Section two

of this paper will describe this new SPN model that we will continue to call an ESPN model.

Section three will then discuss the stochastic interpretation of the ESPN. (Here is where the

strongest philosophical differences have become apparent.) Then section four will describe the

specification and derivation of some queueing, performance and reliability measures on the net.

. And in section five we will describe the design of the new DEEP, particularly the model

specification and model solution methods.



p -.

2. The New ESPN Model

The standard Petri net (PN) model s is defined by a set of places, P, (drawn as circles), a

set of PN-tranition,, T, (drawn as bars), and a set of directed are, A, which connect PN-

* transitions to places or places to PN-transitions. Places may contain tokens, (drawn as dots).

The state of the PN, called the PN marking, is defined by a vector enumerating the number of

tokens in each place.

A place is an input to a PN-transition if an arc exists from the place to the PN-transition; a

place is an output from a PN-transition if an arc exists from the PN-transition to the place. A

PN-transition is enabled when each of its input places contains at least one token. Enabled PN-

transitions can fire, by removing one token from each input place and placing one token in each

output place. Thus the firing of a PN-transition causes a change of state (produces a different

marking) for the PN. Input and output arcs may have an associated mwltiplicity factor; an arc

with a multiplicity factor k is logically equivalent to k arcs. The resckablity tree is the set of

markings that are reachable from a given initial marking,

An iraibitor arcl from a place to a PN-transition has a small circle rather than an arrow-

head at the PN-transition. The firing rule for the PN-transition is changed such that the PN-

transition is disabled if there is at least a token present in the corresponding inhibiting input

place. Note that no tokens are moved along inhibitor arcs.

2.1. Modeling Firing Priority

There are a few additional extensions that are included in the ESPN for the sake of user

- convenience in defining more complex enabling and inhibiting conditions. The concept of arc mul-

tiplicity is extended to inhibitor arcs: a multiple inhibitor arc with multiplicity k needs at least k

tokens in the corresponding input place to di able the PN-transition.

A user may define logical eonditioning functions for PN-transitions such that a transition is

enabled by the normal enabling requirements (including inhibitor arcs) and if the conditioning

function is TRUE. In the present formulation we allow the user to define a conditioning function

. . . . . . . . . . . . . . . . . . ... -
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" which is a boolean expression possibly involving relational and numerical operators and the

number of tokens in various places. Such conditioning functions are often used to reduce the

graphical complexity of the Petri net.

Still another way to define inhibitions on the net may be useful to the user. A priority

level may be defined for each PN-transition in the net, so that the set of PN-transitions is parti-

tioned by priority levels. The firing rule is then modified such that a PN-transition is inhibited if

there is a higher priority PN-transition enabled, while the firing of PN-transitions with the same

priority level follows the standard rules.

ii

2.2. Modeling Probabilistic Behavior

We may often wish to model the probabilistic outcome of an event represented by the firng

of a PN-transition. For example, if a PN-transition represents the running of a diagnostic test on

a (possibly) faulty component, its outcomes are passed with probability p, and failed with pro-

bability 1-p. Thus there would be two output places for the PN-transition, to represent the two

distinct outcomes of the one event. We can use a probabilistic arce at the output of the PN- -

transition. (See Figure 1.) In this case the output token would be deposited in the -place labeled

passed with probability p, or the place labeled failed with probability I-p. A probabilistic arc

may have any (finite) number of output places, and may have an associated multiplicity factor,

k, in which case all k tokens are deposited in the selected place.

Probabilistic arcs are useful for modeling rather simple probabilistic behavior (typically a

branching process) but can become unwieldy for more complex situations. We include a different

construct for such situations: the random switch 5. A random switch is defined on a set of PN-

transitions, such that when a subset of this set is enabled, a probability of firing ( normalized so

that they sum to 1) is defined for each enabled PN-transition. The particular PN-transition to

fire is then chosen according to this (discrete) probability distribution. If we require that the sets

of PN-transitions for each random switch be disjoint, then we can further assign a priority level

to each random switch. This prioritizing of random switches defines the outcome when PN-

!iA:d"
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transitions belonging to two random switches are simultaneously enabled. (Any enabled PN-

transition that does not belong to a random switch will be considered a random switch with one

element.) The choice of the random switch is made according to the priority level of the switch;

the choice of the PN-transition within the chosen random switch is made as if it were the only

one active.

It is important to note here that the probabilities for the probabilistic arc and for the ran-

dom switch need not be constant values; they can each be a function of the current marking.

Very complex behavior can be modeled in this way; the complexity is reflected in the way in

which the places are combined together (sometimes combinatorial functions are needed). The

function could even be expressed in a tabular form, either because the expression of the function

is too complex, or because it is not known in a closed form. Both are common cases when a single

PN-transition is replacing a complex decision subnet.

2.3. Modeling the Timing of Events

A partition (with respect to timing) is assumed on the set of PN-transitions: each PN-

transition is either immediate (fires in zero time) or timed (fires in an amount of time >0). For

each timed PN-transition t&, the cumulative distribution function Ok (t Mi) must be provided.

The parameters of the distribution may depend on the particular marking in which the PN-

transition is enabled, hence the distributional dependence on marking Mi. This distribution

represents the time needed to complete the activity associated with the PN-transition tj in mark-

0 ing Mi, given that it is the activity that will complete, and it is independent of the other activi-

ties that may occur in the marking.

It more than one PN-transition is enabled for a given marking we need to define a set of

rules for choosing the one to fire. If there is an immediate PN-transition among those enabled, it

fires first, with probability one. If more than one immediate PN-transition is simultaneously

enabled, the one to fire is chosen according to the random switch(es) that contain the PN-

transitions.

° ~.*-.......... ....... ...... ... -.. . . -.
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If there are only timed PN-transitions enabled the most logical choice for the one to fire is

that with the minimum firing time. However, there are other scheduling policies the user may

wish to enforce, as in SPADE,11 for example a probabilistic selection of one of many competing

activities to commence. This selection can be reflected in the net itself, by using a probabilistic

arc on an immediate PN-transition. Further, if an activity must wait until all of a set of transi-

tions has fired (effectively the maximum of the firing times), this situation can also be reflected in

the net. (See Figure 2.)

3. Stochastic Interpretation

In order to give a stochastic interpretation to the process described by a PN, we should first

analyze the impact of the immediate PN-transitions. A marking is called a vanishing marking s if

it enables (at least) one immediate PN-transition. A vanishing marking is so named since no time

is spent in this marking; as soon as a vanishing marking is reached (one of) the immediate PN-

transition(s) fires in zero time. If a marking enables only timed PN-transitions then it is called a

tangible marking. Conceptually, a reduction of the reachability tree is possible, by classifying

markings into these two classes, and eliminating the vanishing class.

If a marking enables multiple PN-transitions, some of which are immediate, then by

*definition the PN-transition that will fire is chosen among the immediate PN-transitions only.

Thus in the reachability tree the exiting arcs from a marking are either all corresponding to timed

PN-transitions (if the marking is tangible) or all corresponding to immediate PN-transitions (if

the marking is vanishing). We can then remove the vanishing markings from the reachability tree

by reflecting their probabilistic branching into the predecessor tangible markings. This process

can be repeated until only tangible markings exist in the reduced reachability tree.

This description applies to the simulation approach as well, in the sense that vanishing

marking are treated differently (for example no time counter is changed when leaving a vanishing

marking). It must be clear then that the following discussion about timing issues applies to the

process described by the tangible markings only.
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The definitions introduced so far are not sufficient to completely determine the time-

evolution of the net. Further rules have to be assigned, in particular to define how the future

behavior is dependent upon the past. Even if the same set of rules can be assigned for both an

analytical solution and a simulative solution, the analytical solution requires more stringent

assumptions to be numerically tractable.

In the analytical approach we associate a stochastic process with the reachability tree of the

PN (tangible states only), such that a discrete state in the stochastic process corresponds to a

marking in the PN reachability tree. The nature of the associated stochastic process depends on

the policy that is used to keep track of the past at the time in which a state change occurs. We

call the set of conditioning rules state change policies.

In the simulative approach, instead, we do not generate the reachability tree or simulate the

associated stochastic process, but directly simulate the net. It is more natural in this approach to

look at the PN-truasitions as representing activities whose interactions depend locally on the net

structure rather than on the current marking. In particular activities can be concurrent (or non-

interacting) or conflicting: in this last case conflict means that one activity is interrupted when

some other activity completes. The set of rules for modelling the time dependent behavior of corn-

peting activities is called inlerruption policies.

3.1. State change policies

Two different sets of rules have been discussed 8 for associating an analytically defined sto-

chastic process to a generic PN; a numerical procedure has been presented in the case the firing

time distributions Gh (I I Ali) are of Phase (PH) type. We refer to those rules as statc change res-

iart and state change resuame policies.

8.1.1. State change restart

As a state changes any transition enabled in the new marking restarts from scratch. Under

the assumption that the firing times are exponentially distributed the associated process becomes

a continuous-time homogeneous Markov chain, 12, 5, 13 while in the case of genuerally distributed
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firing times the associated process becomes semi-Markov 2, 6.

It should however be stressed that this policy is not realistic for parallel or concurrent PN-

transitions; in fact parallelism implies that each activity runs until completion independent on S

whether some other activity in some other location of the net has completed. Dugan, et. a 6. ,,

have defined the actual environment of application of this policy, by allowing only exclusive or

competing PN-transitions to be generally distributed, the others being exponential.

For simulation purposes, this policy means that we have to generate a new sample for all

enabled transitions each time a PN-transition fires, thus forcing a state change. However for the

generation of this new sample two different options can be invoked: the identical sample and the S

different sample option. (This terminology is borrowed from the preemption of service interrup-

tion in queuing theory; 14 it should be emphasized that in the present context a state change does

not imply that all the previously enabled activities are interrupted). •

The different sample option means that we generate a new deviate for any new enabled

PN-transition independently of whether or not it has been disabled by the state change. On the

other hand, the identical option means that we maintain the same deviate (but still reset the -.•

firing time) for a transition which was already enabled before the state change.

This rather subtle distinction becomes evident if we allow the parameters or the firing time

distributions to be marking dependent (even in the exponential case). In the diff erent sample

option (which is analytically easier to handle)15 , we account for the possibly modified distribution

at each state change, while in the identical sample policy we account for the possibly modified

distribution only when the PN-transition is enabled again after firing (intermediate state changes 0

do not affect the value of the deviate). Rather interesting behavior can be observed using the

di! f erent sample restart policy15 .

3.1.2. State change resume

If we wish to model the more realistic situation in which the enabling of a PN-transition can

continue through a change of state, we need to allow the countdown of a firing time to resume in

.* *.*.-'..+--y.-'
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the new state (marking). This policy is the only reasonable one for modeling the execution of

parallel or concurrent activities. It is important to note that the distinction between

etate change restart (with different sample) and state change resume is only important when

the distributions involved are not exponential, while they are equivalent in the exponential case

due to the memoryless property of the exponential distribution. It should also be noted that

state change restart with identical sample enforces additional memory even in the case of

exponentially distributed firing times and hence will produce different results then the state

change resume policy.

The implementation of the state change resume policy requires that each PN-transition t
k

keep track of the elapsed time since enabling, through an associated "age variable" ak. Then,

when a state change occurs and the PN-transition is still enabled, the time remaining depends on

both the original firing time distribution, and on the age variable, a,. If the Cdf is not marking

dependent, we can write "Gb (t M'3) -- Gk (t). It follows that at any time t the distribution . !

function of the time to complete the activity associated with the PN-transition t is the residual

life distribution of ti given the age a&, for which the following expression holds:

Gk(t + a&)- Gk(9,)
C(t 4")k

k - C,(ak

In the case of marking dependent distributions this residual life distribution assumes a very

complex form since it depends not on a single age variable but on the individual time intervals

spent in any previous marking. It is for this reason that we will not allow marking dependencies

in this case.

Simulation of the slate change resume policy at the PN level, implies that a deviate needs

to be generated only when a PN transition is first enabled. This deviate is added tw the present

value of the global clock to produce a firing time. In the case where another transition fires first,

without disabling the given transition, this firing time is unchanged.



3.2. Interruption Policies

With the term interruption we represent the situation in which a PN-transition was

.* enabled, was disabled for a non-zero amount of time, and is subsequently re-enabled. The question

arises as to the firing time of the interrupted PN-transition when it is re-enabled. We have the

same policies available as in the previous case: restart and resume. Unless the firing distribu-

tions are all exponential (in which case the interruption policy coincides with the state change

policy), an analytical definition of the stochastic process associated with this policy is not easily

,envisaged; in fact under this policy we allow a rather complex dependence of the current state of

the process on the previous history of the process itself.

3.2.1. Interruption Restart

Again, the simplest answer to the problem of the firing time of a re-enabled interrupted

PN-transition, is to assume that the activity restarts from scratch upon re-enabling. This policy

is termed interruption restart and is certainly valid in a number of cases, most commonly in pro-

gram execution time17 .

While the analytical approach to this policy may be rather complex, the interruption

mechanism is, on the contrary, easily accounted for by simulating the net. Again, the identical

and the different sample options are legal in this case, for the generation of the new sample when

an interrupted PN-transition is re-enabled. The identical sample option is certainly more valid

in the case of an interrupted user-program.

3.2.2. Interruption Resume

An equally valid policy arises, when a re-enabled PN-transition does not waste the time

already spent, but resumes the activity at the point of interruption. In this case, as before, we

* can associate an age variable with each PN-transition.

It is important to note the difference between elate change policies and interruption poli-

cies. It is not unreasonable to assign the state change resume and interrupteon restart policies

f..................................... . .
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to the same PN-transition. Also note that for firing times that are exponentially distributed,

interruption restart (with different sample) is stochastically identical to interruption resuime.

4. Derived Measures of Reliability and Performance

A very important point of the time dependent representation of the system behavior

through Petri nets, is that they allow the user to define in a simple and natural way a large

number of different measures related to the performanice/re liability features of the system.

The output measures are requested to be defined as a part of the input specifications, so

that they can be automatically computed during the solution phase both in the analytical and in

the simulative approach. Thus the input language is specially structured for providing a friendly

environment for the specification of the output measures.

In the analytical approach the knowledge about the system is contained in the time depen-

* dent state probability vector which is the basic quantity to be computed. The user defined meas-

ures are automatically evaluated as a function of these probabilities.

However, since some or the output measures depend on the integral of the probabilities

*rather than on the probabilities themselves, it has been found convenient calculating those

* integrals during the solution step, since they require a small amount of additional computation. In

* the following discussion we provide final formulas only in the case where the associated stochastic

*process is a CTMC. In the simulative approach, instead, the solution is directly driven by the

output measures specified as an input.

In a the following paragraph it is implicitly intended, unless otherwise specified, that the

time t ranges from 0 to oc, so that all the subsequent discussion applies to the transient as well

as to the steady state solution.

4.1. Probability of a Given Condition on the PN

An output condition can be specified as a logical and algebraic function of the number or
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*tokens in the PN places (e.g. no tokens in the failed places). From the point of view of the input

language these output conditions look very similar to the conditioning functions introduced in sec-

tion 2.1.

In the analytical approach we identify the markings a belonging to the subset C for which

the stated condition is true; the output measure

Qc (t) Prob [the condition is TRUE at time 1] is given by:

Qc(t)= E_ PAOt

where P, (t) represents the probability of being in state a at time t. If C is the set of opera-

tional states, Qc(t ) is the usual definition of reliability (or availability). Additionally, if we define

C as the subset of markings in which the system performs at a desired accomplishment level18 ,

then Qc(t ) can be used in the calculation of the performability at that level.

The estimation of Qc(t ), in the transient simulative solution, is accomplished by quantizing

time into small packets of amplitude At, and associating a counter with each packet. I At each

trial the counter number i is incremented by one if at time i At the stated condition is true. At

the end of the simulation, each counter is divided by the numbers of trials run, thus providing a

discretized frequency estimation of Qc (t).

A very useful case arises when we want to calculate the transient probability that the condi- -

tion is satisfied for the first time. By using a standard device in the analysis of stochastic

processes, this quantity is evaluated by stopping the process in the subset C in which the condi-

tion is fulfilled (we make the states a C C absorbing), and the calculating QC (c ) as above.

A similar device is used in simulation where the current trial is stopped as soon as the given

condition is realized, and the stopping time is recorded. The Qc(t) is thus estimated by the fre-

quency of the trials stopped before I.

4.2. Time Spent In a Marking

As in the previou" sub-section assume that we are given a particular condition on the net

.-. *.. . . .. . . .*. *.* . . . .,. '.' % % ~ .~* .'..
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expressed as a logical function of the number of tokens, and let C be the subset of markings

fulfilling that condition. We want to evaluate the time spent in any state . in C during the

interval (0 , t).

To this end, let us introduce a new random variable Y(t), defined by:

011 if the condition is ,siied at time t

Taking the expectation of Y(t ), it is easily seen that the expected time spent in C in the

interval (0 , I) (called rc(t) ) is given by

#Cc 0

It is well known from the theory of Markov chains that as t approaches infinity the proportion of

time spent in states s £ C equals the asymptotic probability

Q ( eE )

In the simulative solution the asymptotic probabilities are obtained by the following estima-

tion. At each trial j, a zi and -yj are produced in the following way. For each marking change

in the trial, a counter zi is incremented by Y(t) a (time spent in the marking), and a counter

-i is incremented by the time spent in the marking. After a prescribed number of trials, we set

(where n is the number of trials)

iij

j-1
ri.•:i O~c 1o) = '.L.

j-1

Confidence intervals are provided for each estimate as well 10.

4.3. Mean p"sage time

Given Qc(t), as calculated in the previous section, is the probability of having entered sub-

-' set C before t for the first time, the mean first passage time 9c, has the usual expression:

,C- f (-Q (t) )di
0



The above formula requires the transient analysis to be extended over a long interval.

The mean passage time and higher moments can be obtained in simulation; the time to first

hitting the given condition is recorded at each trial. The first moment is then estimated by the

average value of the clock at the time when the condition is first true, and the second moment is

estimated by the average of the squared value of the clock. Confidence intervals for all estimates

are provided, for the confidence level desired by the user.

4.4. Cumulative Distribution Function and the Expected Number of Tokens in a

Place

Let pi be a generic place of the PN. The Cdf of the number of tokens in pi at time t is a

staircase function in which the amplitude of the k th step is obtained (from an analytical solution)

by summing the probabilities of all the markings containing k tokens (k = 1,2,3...) in pi at time

t. From a simulative solution, estimates of the time dependent probabilities of k tokens in the

place pi are required. Obviously the density f, (k,t) is a mass function equal to the amplitude of

the k-th step. The expected value is:

-. ~E Em,(t)] I k f,(k,f) "'

As an example, if place pi represents processors queuing up for a common resource the

• above quantities are the Cdf and the expected value of customers in the queue versus time. If pi

represents a failed component, the above quantities are the Cdf and the expected value of the

number of failed components at time t.

4.5. Mean Number of Firings of a PN-Transltion

Given a time interval (0 , t), this quantity indicates how many times, on the average, an

event modeled by a given PN-transition has occurred in that interval. Let t, be a generic PN-

transition, and let C be the subset of the reachable markings which include all the markings

a G C enabling t. The mean number of firings of ti in (0, ) is given by:

.. .. .. .. .. .*o.....



- 16 -

t
E;t) fp,(-T)Xj(sla=

-EC 0

where j (s) is the firing rate of t, in marking a.

In steady state the mean number of firings per unit time becomes:

..- m ,, = p ( )-Xi (,8
04EC

where P. (oc) is the steady state probability of state .

As an example, if t, indicates the completion of a job, the above quantity is a measure of

the number of jobs processed in (0 ,t) and thus is a measure of the system throughput (job com-

pletion rate). Similarly if t, indicates failure (repair) of a component the above quantity provides

the mean number of failures (or repairs) of that component in (0 , t).

Again the same quantities can be estimated from the simulative solution. In fact we can

record how many times each PN-transition has fired in each trial, and then take averages of these

" numbers at the end of the'simulation.

5. Model Specification and Solution

In this section we will briefly describe the implementation of these ideai in the solution

package, DEEP (the Duke ESPN evaluation package). There are two interfaces being designed

for DEEP, one textual, TIDE (Textual Interface for DEEP), and one graphical, DIVE (DEEP

Interactive Video Editor). When the initial description of the ESPN is entered, it will be stored

in a form that either interface can access, so that the user is not "bound" to one type of interface

indefinitely. Both are designed with the novice user in mind.

" Regardless of which interface is chosen, a "name" can be defined for each place and PN-

transition. For each PN-transition, the user defines the input places, inhibiting places (and multi-

plicities), conditioning functions, and the output places (and multiplicity of output arcs). If a PN-

-" transition is an immediate transition, it is assigned a priority level, and a random switch may be

defined. If it is a timed PN-transition, the firing distribution (with possibly marking-dependent

parameters), state change and interruption policies (i.e. reetart or resume identical or

I.'-..

° % . ..
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different), are also defined. There are default values assigned for the novice user, for example

resume for both agate cAdnge and interruption, and a priority level of zero. The specification of

the desired output measures is also part of the input language description.

There are two possible solution methods included in DEEP, an analytic Markov chain

solver for the solution of the associated stochastic process, and an ESPN simulator to use when

the analytic solution is not possible. The user can obtain either a transient or an ergodic solution

by either method. The first step in the analytic solution of the ESPN as defined in this paper is

the generation of the reachability tree, the set of all markings that are reachable from a given ini-

tial marking.

If all the timed PN-transitions are exponentially distributed then the resulting reachability

tree is classified as a Markov chain, and solved analytically. If a PN-transition has a Phase-type

distribution, an expansion of the state space is necessary before analytic solution. This poses

some additional "bookkeeping" problems, since a particular marking in the ESPN is now

represented by a cluster of states in the associated stochastic process.

The resulting Markov chain is then solved numerically, for either a transient or an ergodic

solution. The solution of the chain provides the (possibly time-dependent) marking probabilities,

which must then be transformed into the desired measures on the net by means of the formulas

presented in the previous section.

There are many instances in which the stochastic process asociated with a particular ESPN

is analytically tractable with difficulty at best. These cases include those in which a firing time is

not exponentially or Phase-type distributed, or in which the reAtart -identical-sample policy is

chosen. In these cases, we resort to the simulation of the ESPN for solution. There are two types

of ESPN simulation available, a transient simulation and an ergodic simulation, both of which

gather statistics from many sample paths through the net. We are currently studying ways to

make the simulation more efficient, especially in the case of simulating "stifr systems or rare

events.

*, . .
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6. Conclusions

We have presented the views of three research groups on the theory and solution of stochas-

tic Petri nets, in an attempt to merge them into one. The results of this integration of both

models and solution techniques are embodied in the design of a new ESPN model and

corresponding solution package. We believe that the ESPN model as defined in this paper

represents a unification of the most important aspects of the three separate models. We also feel

that the solution package will gain from both our individual experiences with SPN's, and from the

many discussions that preceded the writing of this paper.
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TABLE 1

Comparion of the three different packages

DEEPI GSPNA IEN-SPN Features
YES YES YES Multiple arcs
YES YES NO Immediate transitions
YES NO (1) YES Inhibitor arcs
NO NO (1) NO Multiple inhibitor arcs
NO NO (1) NO Marking dependent inhibitions
NO (2) NO (2) YES Priority levels
NO (3) YES NO (3) Random switch constructs
YES NO (4) NO (3) Probabilistic arcs
NO YES NO (3) Marking dependent probabilities

Firing distributions
YES YES YES exponential
NO (5) NO YES coxian
YES NO NO other
YES YES YES Marking dependent parameters

Solution method

SLULATION (6) ANALYTICAL ANALYTICAL steady state
SIMIULATION (6) NO ANALYTICAL transient
YES NO NO Graphical input capability
YES YES YES Textual input capability
NO YES NO Textual editor
NOTES
(1) simulated by setting a rate or a probability to 0
(2) implicit priority of immediate transitions over timed ones
(3) simulated with high rate transitions
(4) obtained as a particular case of the random switch construct
(5) for the simulation, ERLANG, 1IYPEREXT, HYPOEXT are predefined
(61 analytic solution of some cases is included in the de.ign

. ...
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Figure 2. Implementation of Different Scheduling Policies
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